本文最后更新于:3 个月前
[√] 5.5 - 实践:基于ResNet18网络完成图像分类任务
alec:
很多任务可以看做是图像分类任务,比如人脸检测可以看做检测是否是人脸的二分类任务
本节使用的优化器是adam优化器。
在本实践中,我们实践一个更通用的图像分类任务。
图像分类 (Image Classification)是计算机视觉中的一个基础任务,将图像的语义将不同图像划分到不同类别。很多任务也可以转换为图像分类任务。比如人脸检测就是判断一个区域内是否有人脸,可以看作一个二分类的图像分类任务。
这里,我们使用的计算机视觉领域的经典数据集:CIFAR-10数据集,网络为ResNet18模型,损失函数为交叉熵损失,优化器为Adam优化器,评价指标为准确率。
Adam优化器的介绍参考《神经网络与深度学习》第7.2.4.3节。
[√] 5.5.1 - 数据处理
[√] 5.5.1.1 - 数据集介绍
CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为$32\times32$像素。CIFAR-10数据集的示例如 图5.15 所示。
将数据集文件进行解压:
1 2 3 4 5 !mkdir /home/aistudio/datasets/ !tar -xvf /home/aistudio/data/data9154/cifar-10 -python.tar.gz -C /home/aistudio/datasets/
1 2 3 4 5 6 7 8 9 cifar-10 -batches-py/ cifar-10 -batches-py/data_batch_4 cifar-10 -batches-py/readme.html cifar-10 -batches-py/test_batch cifar-10 -batches-py/data_batch_3 cifar-10 -batches-py/batches.meta cifar-10 -batches-py/data_batch_2 cifar-10 -batches-py/data_batch_5 cifar-10 -batches-py/data_batch_1
[√] 5.5.1.2 - 数据读取
在本实验中,将原始训练集拆分成了train_set、dev_set两个部分,分别包括40 000条和10 000条样本。将data_batch_1到data_batch_4作为训练集,data_batch_5作为验证集,test_batch作为测试集。 最终的数据集构成为:
训练集:40 000条样本。
验证集:10 000条样本。
测试集:10 000条样本。
读取一个batch数据的代码如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 import osimport pickleimport numpy as npdef load_cifar10_batch (folder_path, batch_id=1 , mode='train' ): if mode == 'test' : file_path = os.path.join(folder_path, 'test_batch' ) else : file_path = os.path.join(folder_path, 'data_batch_' +str (batch_id)) with open (file_path, 'rb' ) as batch_file: batch = pickle.load(batch_file, encoding = 'latin1' ) imgs = batch['data' ].reshape((len (batch['data' ]),3 ,32 ,32 )) / 255. labels = batch['labels' ] return np.array(imgs, dtype='float32' ), np.array(labels) imgs_batch, labels_batch = load_cifar10_batch(folder_path='datasets/cifar-10-batches-py' , batch_id=1 , mode='train' )
查看数据的维度:
1 2 print ("batch of imgs shape: " ,imgs_batch.shape, "batch of labels shape: " , labels_batch.shape)
1 batch of imgs shape: (10000 , 3 , 32 , 32 ) batch of labels shape: (10000 ,)
1万张图像,1万个分类标签,每张图像3个通道,像素为32*32
可视化观察其中的一张样本图像和对应的标签,代码如下所示:
1 2 3 4 5 6 7 8 %matplotlib inlineimport matplotlib.pyplot as plt image, label = imgs_batch[1 ], labels_batch[1 ]print ("The label in the picture is {}" .format (label)) plt.figure(figsize=(2 , 2 )) plt.imshow(image.transpose(1 ,2 ,0 )) plt.savefig('cnn-car.pdf' )
类别9是卡车
[√] 5.5.1.3 - 构造Dataset类
构造一个CIFAR10Dataset类,其将继承自paddle.io.Dataset
类,可以逐个数据进行处理。代码实现如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 import paddleimport paddle.io as iofrom paddle.vision.transforms import Normalizeclass CIFAR10Dataset (io.Dataset): def __init__ (self, folder_path='/home/aistudio/cifar-10-batches-py' , mode='train' ): if mode == 'train' : self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=1 , mode='train' ) for i in range (2 , 5 ): imgs_batch, labels_batch = load_cifar10_batch(folder_path=folder_path, batch_id=i, mode='train' ) self.imgs, self.labels = np.concatenate([self.imgs, imgs_batch]), np.concatenate([self.labels, labels_batch]) elif mode == 'dev' : self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=5 , mode='dev' ) elif mode == 'test' : self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, mode='test' ) self.transform = Normalize(mean=[0.4914 , 0.4822 , 0.4465 ], std=[0.2023 , 0.1994 , 0.2010 ], data_format='CHW' ) def __getitem__ (self, idx ): img, label = self.imgs[idx], self.labels[idx] img = self.transform(img) return img, label def __len__ (self ): return len (self.imgs) paddle.seed(100 ) train_dataset = CIFAR10Dataset(folder_path='/home/aistudio/datasets/cifar-10-batches-py' , mode='train' ) dev_dataset = CIFAR10Dataset(folder_path='/home/aistudio/datasets/cifar-10-batches-py' , mode='dev' ) test_dataset = CIFAR10Dataset(folder_path='/home/aistudio/datasets/cifar-10-batches-py' , mode='test' )
[√] 5.5.2 - 模型构建
对于Reset18这种比较经典的图像分类网络,飞桨高层API中都为大家提供了实现好的版本,大家可以不再从头开始实现。这里首先使用飞桨高层API中的Resnet18进行图像分类实验。
1 2 3 from paddle.vision.models import resnet18 resnet18_model = resnet18()
飞桨高层 API是对飞桨API的进一步封装与升级,提供了更加简洁易用的API,进一步提升了飞桨的易学易用性。其中,飞桨高层API封装了以下模块:
Model类,支持仅用几行代码完成模型的训练;
图像预处理模块,包含数十种数据处理函数,基本涵盖了常用的数据处理、数据增强方法;
计算机视觉领域和自然语言处理领域的常用模型,包括但不限于mobilenet、resnet、yolov3、cyclegan、bert、transformer、seq2seq等等,同时发布了对应模型的预训练模型,可以直接使用这些模型或者在此基础上完成二次开发。
飞桨高层 API主要包含在paddle.vision
和paddle.text
目录中。
[√] 5.5.3 - 模型训练
复用RunnerV3类,实例化RunnerV3类,并传入训练配置。 使用训练集和验证集进行模型训练,共训练30个epoch。 在实验中,保存准确率最高的模型作为最佳模型。代码实现如下:
alec:
什么是Adam优化器?
什么是L2正则化策略
什么是批量归一化?
评价指标函数中的is_logist=True
参数是什么意思
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 import paddle.nn.functional as Fimport paddle.optimizer as optfrom nndl import RunnerV3, metric use_gpu = True if paddle.get_device().startswith("gpu" ) else False if use_gpu: paddle.set_device('gpu:0' )print ('------------------------------\n' )print (use_gpu)print ('------------------------------\n' ) lr = 0.001 batch_size = 64 train_loader = io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True ) dev_loader = io.DataLoader(dev_dataset, batch_size=batch_size) test_loader = io.DataLoader(test_dataset, batch_size=batch_size) model = resnet18_model optimizer = opt.Adam(learning_rate=lr, parameters=model.parameters(), weight_decay=0.005 ) loss_fn = F.cross_entropy metric = metric.Accuracy(is_logist=True ) runner = RunnerV3(model, optimizer, loss_fn, metric) log_steps = 3000 eval_steps = 3000 runner.train(train_loader, dev_loader, num_epochs=30 , log_steps=log_steps, eval_steps=eval_steps, save_path="best_model.pdparams" )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 运行时长: 7 分钟8 秒92 毫秒 结束时间: 2022 -12 -18 18 :59 :13 ------------------------------True ------------------------------ [Train] epoch: 0 /30 , step: 0 /18750 , loss: 7.30469 /opt/conda/envs/python35-paddle120-env/lib/python3.7 /site-packages/paddle/nn/layer/norm.py:653 : UserWarning: When training, we now always track global mean and variance. "When training, we now always track global mean and variance." ) [Train] epoch: 4 /30 , step: 3000 /18750 , loss: 0.92417 [Evaluate] dev score: 0.65710 , dev loss: 0.99306 [Evaluate] best accuracy performence has been updated: 0.00000 --> 0.65710 [Train] epoch: 9 /30 , step: 6000 /18750 , loss: 0.59166 [Evaluate] dev score: 0.70810 , dev loss: 0.85658 [Evaluate] best accuracy performence has been updated: 0.65710 --> 0.70810 [Train] epoch: 14 /30 , step: 9000 /18750 , loss: 0.75011 [Evaluate] dev score: 0.70640 , dev loss: 0.87181 [Train] epoch: 19 /30 , step: 12000 /18750 , loss: 0.57231 [Evaluate] dev score: 0.72950 , dev loss: 0.81165 [Evaluate] best accuracy performence has been updated: 0.70810 --> 0.72950 [Train] epoch: 24 /30 , step: 15000 /18750 , loss: 0.49599 [Evaluate] dev score: 0.73080 , dev loss: 0.79610 [Evaluate] best accuracy performence has been updated: 0.72950 --> 0.73080 [Train] epoch: 28 /30 , step: 18000 /18750 , loss: 0.60004 [Evaluate] dev score: 0.70690 , dev loss: 0.88804 [Evaluate] dev score: 0.71990 , dev loss: 0.84240 [Train] Training done!
可视化观察训练集与验证集的准确率及损失变化情况。
1 2 3 from nndl import plot_training_loss_acc plot_training_loss_acc(runner, fig_name='cnn-loss4.pdf' )
在本实验中,使用了第7章中介绍的Adam优化器进行网络优化,如果使用SGD优化器,会造成过拟合的现象,在验证集上无法得到很好的收敛效果。可以尝试使用第7章中其他优化策略调整训练配置,达到更高的模型精度。
alec:
此处的优化器使用了Adam优化器,没有使用SGD这个随机梯度下降优化器,因此使用SGD会造成过拟合的现象,过拟合会导致在验证集上无法收敛,效果差。过拟合即过度拟合了训练数据集,泛化性查。
[√] 5.5.4 - 模型评价
使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失情况。代码实现如下:
1 2 3 4 5 runner.load_model('best_model.pdparams' ) score, loss = runner.evaluate(test_loader)print ("[Test] accuracy/loss: {:.4f}/{:.4f}" .format (score, loss))
1 [Test] accuracy/loss: 0.7257 /0.8251
[√] 5.5.5 - 模型预测
同样地,也可以使用保存好的模型,对测试集中的数据进行模型预测,观察模型效果,具体代码实现如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 id2label = {0 :'airplane' , 1 :'automobile' , 2 :'bird' , 3 :'cat' , 4 :'deer' , 5 :'dog' , 6 :'frog' , 7 :'horse' , 8 :'ship' , 9 :'truck' } X, label_ids = next (test_loader()) logits = runner.predict(X) pred = F.softmax(logits) pred_class_id = paddle.argmax(pred[2 ]).numpy() label_id = label_ids[2 ][0 ].numpy() pred_class = id2label[pred_class_id[0 ]] label = id2label[label_id[0 ]]print ("The true category is {} and the predicted category is {}" .format (label, pred_class)) plt.figure(figsize=(2 , 2 )) imgs, labels = load_cifar10_batch(folder_path='/home/aistudio/datasets/cifar-10-batches-py' , mode='test' ) plt.imshow(imgs[2 ].transpose(1 ,2 ,0 )) plt.savefig('cnn-test-vis.pdf' )
[√] 5.5.7 - 基于自定义的ResNet18网络进行图像分类实验
这里使用自定义的 Model_ResNet18
模型进行图像分类实验,观察两者结果是否一致。
[√] 5.5.7.1 - 模型训练
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 import paddle.nn.functional as Fimport paddle.optimizer as optfrom nndl import RunnerV3, metric, op use_gpu = True if paddle.get_device().startswith("gpu" ) else False if use_gpu: paddle.set_device('gpu:0' ) lr = 0.001 batch_size = 64 train_loader = io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True ) dev_loader = io.DataLoader(dev_dataset, batch_size=batch_size) test_loader = io.DataLoader(test_dataset, batch_size=batch_size) model = op.Model_ResNet18(in_channels=3 , num_classes=10 , use_residual=True ) optimizer = opt.Adam(learning_rate=lr, parameters=model.parameters(), weight_decay=0.005 ) loss_fn = F.cross_entropy metric = metric.Accuracy(is_logist=True ) runner = RunnerV3(model, optimizer, loss_fn, metric) log_steps = 3000 eval_steps = 3000 runner.train(train_loader, dev_loader, num_epochs=30 , log_steps=log_steps, eval_steps=eval_steps, save_path="best_model.pdparams" )
[√] 5.5.7.2 - 模型评价
1 2 3 4 5 runner.load_model('best_model.pdparams' ) score, loss = runner.evaluate(test_loader)print ("[Test] accuracy/loss: {:.4f}/{:.4f}" .format (score, loss))
可以看到,使用自定义的Resnet18模型与高层API中的Resnet18模型训练效果可以基本一致。
[√] 5.6 - 实验拓展